

Pergamon Tetrahedron: *Asymmetry* 11 (2000) 4239–4243

TETRAHEDRON: *ASYMMETRY*

Synthesis of chiral pyrrolidine and pyrrole derivatives through the chemoselective Dieckmann reaction of α , β -aminodiesters

Américo C. Pinto, Rodrigo V. Abdala and Paulo R. R. Costa*

Laborato´rio de Quı´mica Bioorgaˆnica (*LQB*), *Nu´cleo de Pesquisas de Produtos Naturais*, *Centro de Cieˆncias da Sau´de*, *bloco H*, *Ilha da Cidade Universita´ria*, *Universidade Federal do Rio de Janeiro*, 21941-590 *Rio de Janeiro*, *Brazil*

Received 1 September 2000; accepted 7 September 2000

Abstract

a,b-Aminodiesters were allowed to react with *t*-BuOK in THF at −78°C. The chemoselectivity of the Dieckmann cyclization was controlled by the nature of the substituents R_3 and R_4 , allowing the preparation of pyrrolidine or pyrrole derivatives. © 2000 Elsevier Science Ltd. All rights reserved.

Pyrrolidine derivatives present a diversity of pharmacological properties and potential pharmaceutical applications.1 Different strategies have been developed to construct the pyrrolidine nucleus,² among them the Dieckmann reaction involving α , β -aminodiesters and related compounds as substrates.³ Herein, we report the Dieckmann reaction of α , β -aminodiesters of type **1**. The chemoselectivity of the cyclization (formation of **2** or **3**) was shown to be dependent on the nature of the substituents R_3 and R_4 .

The synthesis of α , β -aminodiesters **1a–g** from enoates **4a–c** is shown in Scheme 1. Conjugate addition of benzylamine to **4a** led to adduct **5a** in good yield. This compound was then alkylated with BrCH₂CO₂Et and BrCH₂CO₂*t*-Bu, furnishing, respectively, **1a** and **1b**. The N-debenzylated derivative **1c** was prepared from **1a** by hydrogenolysis.

^{*} Corresponding author. E-mail: lqb@nppn.ufrj.br

⁰⁹⁵⁷⁻⁴¹⁶⁶/00/\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: S0957-4166(00)00377-3

Scheme 1. Preparation of α , β -aminoesters **1a**–**g**. (a) Neat BnNH₂, −30°C, 48 h, **5a** (90%), **5b**, (78%), **5c** (67%); (b) BrCH2CO2R (*t*-Bu or Et), THF/H2O, Na2CO3, reflux, 14 h, **1a** (86%), **1b** (83%), **1d** (84%), **1e** (81%), **1f** (67%), c-Pd–C (10%), AcOEt, H2 60 Psi, 4 h, rt, **1c** (95%), **1g** (96%)

The key step for the synthesis of chiral α , β -aminodiesters **1d**–**g** was the *syn*-selective conjugate addition of benzylamine to enantiomerically pure enoates **4b**,**c**, easily prepared from D-(+)-mannitol (Scheme 1). Compound **5b** was obtained in 80% *de* (>95% *de* after chromatographic purification) by reacting **4b** with neat $BNH₂$, as previously described by Yamada et al.⁴ Compound **5c** was also prepared with a high *syn*-selectivity when **4c** was used as acceptor. These adducts were then alkylated with the required α -bromoacetates leading to **1d–f**. Hydrogenolysis of **1e** furnished **1g**.

The Dieckmann reaction of **1a**–**g** was investigated in the presence of *t*-BuOK in THF at −78°C (Scheme 2). Under these conditions compound types **2**, **3** or **6** were obtained with different chemoselectivities, depending on the nature of groups R_3 and R_4 .⁵

When $1a,b$ ($R_3 = H$; $R_4 = Bn$) were used as substrates, the chemoselectivity favored 2a (Scheme 2, entries 1 and 2), despite the nature of the ester group R_2 , while from N-debenzylated derivative **1c** (entry 3), a complex mixture of products was formed.

In the chiral series, aminoesters $1d$ – $f(R_3 = 1,2$ -dihydroxyethyldimethylacetal group, $R_4 = Bn$) led exclusively to type 2 pyrrolidines (2b and 2c, respectively), despite the nature of R_1 and R_2 (entries 4–6), although the chemical yield was lower from **1f** (entry 6), even when a more prolonged reaction time was used. The chemoselectivity could be reversed when N-debenzylated derivative **1g** was used as substrate, but in this case the expected β -ketoester was not isolated, being transformed into **6** in the reaction medium, probably through enolization followed by aromatization.6,7

The configuration at C_3 in 2b, c was determined by NOE experiments (Fig. 1) once irradiation at H_3 led to an increase in the absorption of one of the hydrogen atoms of the dimethylacetal moiety (Hc or Hc') and Hb, while no effect was observed on $H₂$. The NOE experiments also suggest that in the main conformers of $2b$, c the benzyl group at the nitrogen is α -oriented, once irradiation of H₂ led to an increase in the absorption of H_a, H_{a'} and H_{5 α}.

In Scheme 3 we propose a mechanistic rationale to explain the observed results. Due to the electronic effect of the nitrogen atom, the kinetic deprotonation of **1** led preferentially to

enolates type **E-2**, but once potassium enolates equilibrate, even at −78°C,⁸ the enolate distribution is thermodynamically controlled, allowing the formation of enolates type **E**-**1**, required to explain the formation of products type **2**. On the other hand, the cyclization step is kinetically controlled once the product distribution did not change when the experiments were interrupted at different reaction times. Since the cyclization of **1a** led preferentially to **2a**, one can conclude that TS_{1a} was favored over TS_{2a} ($R_3=H$, $R_4=Br$). A possible explanation is that in the first case CO_2R_1 and Bn (R₄) groups are assuming a 1,3-relationship, while in the second a stronger 1,2-steric interaction between these groups would be observed (Scheme 3). On the other hand, when R_3 is the dimethylacetal group and $R_4 = Bn$, the three substituents in both transition states TS_{1b} and TS_{2b} are expected to be assuming a *trans-trans* orientation. However, while in $TS_{1b} CO_2R_1$ and Bn groups are 1,3-*cis* oriented, the same relationship occurs in TS_{2b}

* Complex mixture of products obtained in low yield.

Scheme 2. Dieckmann reaction of aminodiesters **1a**–**g**

 $JH_2, H_3 = 9.0 Hz$

Irradiation of H_3 3.7% nOe at Hc or Hc' 3.1% nOe at Hb

Irradiation of H_2 6.6% nOe at Ha or Ha' 3.1% nOe at Ha or Ha' 3.3% nOe at $H_5\alpha$

Fig. 1. Experiments of NOE in **2c**

between $CO₂R₂$ and dimethylacetal group. This latter interaction should be stronger since both groups are bulky and polar (stereoelectronic interactions), disfavoring TS_{2b} and, consequently, providing only compounds type 2. Finally, when R_3 is the dimethylacetal group and $R_4 = H$, a 1,2-steric interaction occurs between CO_2R_1 and the dimethylacetal moiety (R_3) in the **TS_{1c}**, while in TS_{2c} the steric interaction is released once these groups are in a 1,3-relationship. Therefore, the chemoselectivity was reversed, with the preferential formation of a β -ketoester type **3**, precursor of aromatic derivative **6**.

Scheme 3. Proposed transition states leading to **2** and **3**

The use of this strategy to prepare enantiomerically pure bioactive pyrrolidine derivatives is underway in our laboratory.

Acknowledgements

To PRONEX, CNPq and CAPES for financial support. To Francisco A. Santos for ¹H NMR and 13C NMR. To CNPq for fellowships for the authors.

References

1. (a) Michael, P. J. *Nat*. *Prod*. *Rep*. **1997**, 14, 619 and references cited therein. (b) Michael, P. J. *Nat*. *Prod*. *Rep*. **1992**, 9, 17 and references cited therein. (c) Elbein, A. D. *Annu*. *Rev*. *Biochem*. **1987**, 56, 497 and references cited therein. (d) Lee, R. E.; Smith, M. D.; Nash, R. J.; Griffiths, R. C.; McNeil, M.; Grewal, R. K.; Yan, W.; Bersa, G. S.; Brennan, P. J.; Fleet, G. W. J. *Tetrahedron Lett*. **1997**, 38, 6733. (e) Mulzer, J.; Meier, A.; Buschmann, J.; Luger, P. *J*. *Org*. *Chem*. **1996**, 61, 566. (f) Chen, Y.; Vogel, P. *J*. *Org*. *Chem*. **1994**, 59, 2487. (g) Wong, C.-H.; Provencher, L.; Porco Jr, J. A.; Jung, S.-H.; Wang, Y.-F.; Chen, L.; Wang, R.; Steensma, D. H. *J*. *Org*. *Chem*. **1995**, 60, 1492. (h) Iida, H; Yamazaki, N.; Kibayashi, C. *Tetrahedron* **1985**, 3255. (i) Tasker, A. S.; Sorensen, B. K.; Jae, H.-S.; Winn, M.; von Geldern, T. W.; Dixon, D. B.; Chiou, W. J.; Dayton, B. D.; Calzadila, S.; Hernandez, L.; Marsh, K. C.; WuWong, J. R.; Opgenorth, T. J. *J*. *Med*. *Chem*. **1997**, 40, 322. (j) Palfreyman, M. N.; Souness, J. E., *Prog*. *Med*. *Chem*. **1996**, 33, 1. (k) Stafford, J.; Feldman, A. *Annu*. *Rep*. *Med*. *Chem*. **1996**, 31, 71.

- 2. (a) Serino, C.; Stehle, N.; Park, Y. S.; Florio, S.; Beak, P. *J*. *Org*. *Chem*. **1999**, 64, 1160. (b) Kim, B. J.; Park, Y. S.; Beak, P. *J*. *Org*. *Chem*. **1999**, 64, 1705. (c) Delair, P.; Brot, E.; Kanazawa, A.; Greene, A. E. *J*. *Org*. *Chem*. **1999**, 64, 1705. (d) Denmark, S. E.; Marcin, L. R. *J*. *Org*. *Chem*. **1995**, 60, 3221 and references cited therein.
- 3. (a) Blake, J.; Willson C. D.; Rapoport, H. *J*. *Am*. *Chem*. *Soc*. **1964**, 86, 5293. (b) Miyamoto, M.; Morimoto, H.; Sugawa, T.; Uchibayashi, M.; Sanno, Y.; Tanaka, K. *J*. *Pharm*. *Soc*. *Jpn*. **1957**, ⁷⁷, 571. (c) Andrews, M. D.; Brewster, A. G.; Crapnell, K. M.; Ibbett, A. J.; Jones, T.; Moloney, M. G.; Prout, K.; Watkin, D. *J*. *Chem*. *Soc*., *Perkin Trans*. 1 **1998**, 223. (d) Deshmukh, M. N.; Gangakhedkar, K. K.; Kumar, U. S. *Synth*. *Commun*. **1996**, 26, 1657. (e) Li, Q.; Chu, D. T. W.; Raye, K.; Claiborne, A.; Seif, L.; Macri, B.; Plattner, J. J. *Tetrahedron Lett*. **1995**, 36, 8391. (f) Yamada, Y.; Ishii, T.; Kimura, M.; Hosaka, K. *Tetrahedron Lett*. **1981**, ²², 1353. (g) Kuhn, R.; Osswald, G. *Chem*. *Ber*. **1956**, 89, 1423.
- 4. Matsunaga, H.; Sakamaki, T.; Nagaoka, H.; Yamada, Y. *Tetrahedron Lett*. **1983**, ²⁴, 3009.
- 5. The use of LDA as base (non-equilibrating conditions) led to a complex mixture of products from which compounds type 2 were obtained in low yield $(\sim 10\%)$.
- 6. The formation of pyrrole derivatives from Dieckmann reaction of β -aminodiesters was reported in early studies. Schaefer, J. P.; Bloomfield, J. J. *Org*. *React*. **1967**, 15, 1.
- 7. Data for β -ketoester **2b**: $[\alpha]_D^{25} = +57.6$ ($c = 1.32$, CH₂Cl₂); ¹H NMR (200 MHz, CDCl₃/TMS) δ (ppm) 1.33 (s, 3H), 1.41 (s, 3H), 2,95 (d, 1H, *J*=17.9 Hz), 3.34 (d, 1H, *J*=9.2 Hz), 3.43 (d, 1H, *J*=17.9 Hz), 3.53 (d, 1H, *J*=13.3 Hz), 3.77 (s, 3H), 3.84 (dd, 1H, *J*=9.2; 5.2 Hz), 3.93 (dd, 1H, *J*=8.8; 6.6 Hz), 4.01 (dd, 1H, *J*=8.8; 6.8 Hz), 4.24 (d, 1H, *J* = 13.3 Hz), 4.49 (ddd, 1H, *J* = 6.8; 6.6; 5.2 Hz), 7.20–7.40 (m, 5ArH); ¹³C NMR (50 MHz, CDCl₃/TMS) δ (ppm) 24.29, 25.58, 52.52, 56.19, 58.98, 61.86, 64.77, 65.78, 75.53, 109.65, 128.30, 128.40, 137.36, 167.86, 205.24. Data for β-ketoester 2c: [α]²⁵ = +55.85 (*c* = 3.76, CH₂Cl₂); ¹H NMR (200 MHz, CDCl₃/TMS) δ (ppm) 1.34 (s, 3H), 1.45 (s, 3H), 1.48 (s, 9H), 2.90 (d, 1H, *J*=17.7 Hz), 3.20 (d, 1H, *J*=9.0 Hz), 3.39 (d, 1H, *J*=17.7 Hz), 3.51 (d, 1H, *J*=13.3 Hz), 3.76 (dd, 1H, *J*=9.0; 5.6 Hz), 3.89 (dd, 1H, *J*=8.7; 6.9 Hz), 4.01 (dd, 1H, *J*=8.7; 6.8 Hz), 4.27 (d, 1H, *J*=13.3 Hz), 4.49 (ddd, 1H, *J*=6.9; 6.8; 5.6 Hz), 7.20–7.40 (m, 5ArH); ¹³C NMR (50 MHz, CDCl₃/TMS) δ (ppm) 24.51, 26.04, 27.80, 57.44, 59.10, 61.90, 65.10, 65.82, 76.14, 82.23, 109.70, 127.37, 128.38, 137.55, 166.65, 205.80. Data for pyrrole derivative 6: $[\alpha]_D^{25} = +1.7$ ($c = 1.79$, CH₂Cl₂); mp=114–115°C; UV $\lambda_{\text{max}} = 268$ 80 nm, $\lambda_{\text{max}} = 19$ 586 nm; ¹H NMR (200 MHz, CDCl₃/TMS) δ (ppm) 1.43 (s, 3H), 1.50 (s, 3H), 1.60 (s, 9H), 3.85 (dd, 1H, *J*=8.1; 6.7 Hz), 4.27 (dd, 1H, *J*=8.1; 6.4 Hz), 5.04 (dd, 1H, *J*=6.7; 6.4 Hz), 5.73 (d, 1H, *J*=2.8 Hz).

. .

8. d'Angelo, J. Tetrahedron Report No. 25. *Tetrahedron* **1976**, 32, 2979.